Journal of Organometallic Chemistry, 362 (1989) 179-186 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Chiral modifizierte Zweikerncluster des Typs $\operatorname{Ru}_2(\operatorname{CO})_4(\eta^2-\operatorname{OOCR})_2(\eta^2-\operatorname{DIOP})$ als Katalysatoren für die asymmetrische Hydrierung von Hydroxyaceton

Gerhard F. Schmidt und Georg Süss-Fink **

Institut für Anorganische Chemie der Rheinisch-Westfälischen Technischen Hochschule Aachen, Templergraben 55, D-5100 Aachen (B.R.D.)

(Eingegangen den 12. Juli 1988)

Abstract

The reaction of the dinuclear acetato and propionato clusters $\operatorname{Ru}_2(\operatorname{CO})_4(\eta^2-\operatorname{OOCR})_2(\operatorname{NCCH}_3)_2$ with the chiral diphosphines *R*, *R*-DIOP and *S*, *S*-DIOP yields the substitution products $\operatorname{Ru}_2(\operatorname{CO})_4(\eta^2-\operatorname{OOCR})_2(\eta^2-\operatorname{DIOP})$ (1: $\operatorname{R} = \operatorname{Me}$; 2: $\operatorname{R} = \operatorname{Et}$). The trifluoroacetato derivatives $\operatorname{Ru}_2(\operatorname{CO})_4(\eta^2-\operatorname{OOCCF}_3)_2(\eta^2-\operatorname{DIOP})$ (3) are obtained from 1 or 2 by exchange of the η^2 -carboxylato bridges with trifluoroacetic acid. The enantiomeric pure clusters 1-3 catalyse the hydrogenation of hydroxy-acetone to 1,2-propanediol; the enantiomeric excess varies from 4.9 to 14.0%.

Zusammenfassung

Die Umsetzung der zweikernigen Acetato- und Propionato-Cluster Ru₂(CO)₄- $(\eta^2 \cdot OOCR)_2(NCCH_3)_2$ mit den chiralen Diphosphanen *R*, *R*- und *S*, *S*-DIOP liefert die Substitutionsprodukte Ru₂(CO)₄ $(\eta^2 \cdot OOCR)(\eta^2 \cdot DIOP)$ (1: R = Me, 2 = Et). Die Trifluoroacetato-Derivate Ru₂(CO)₄ $(\eta^2 \cdot OOCCF_3)_2(\eta^2 \cdot DIOP)$ (3) sind ausgehend von 1 oder 2 durch Austausch der $\eta^2 \cdot Carboxylato-Brücken mit Trifluoressigsäure zugänglich. Die enantiomerenreinen Cluster 1-3 katalysieren die Hydrierung von Hydroxyaceton zu 1,2-Propandiol; die Enantiomerenüberschüsse liegen zwischen 4.9 und 14.0%.$

Einleitung

Zweikernige Rutheniumkomplexe mit verbrückenden Carboxylatoliganden wurden erstmals 1969 von Lewis et al. beschrieben: Beim Erhitzen von $Ru_3(CO)_{12}$

^{*} Neue Anschrift: Institut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2000 Neuchâtel (Suisse).

in Carbonsäuren wurden Polymere der Zusammensetzung $[Ru_2(CO)_4(OOCR)_2]_r$ $(R = H, Me, Et oder n-C_9H_{19})$ isoliert, die sich in koordinierenden Solvenzien unter Bildung der Zweikernkomplexe Ru₂(CO)₄(η^2 -OOCR)₂L₂ (L = THF, MeCN) lösen [1]. Infrarot- und Raman-Untersuchungen zeigen, daß in den Polymeren die zweikernigen Einheiten über Ruthenium-Sauerstoff-Bindungen zu Ketten verknüpft sind [2]. Dieses Verknüpfungsprinzip wird durch den röntgenographisch gesicherten Komplex Ru₄(CO)₈(^sBuCOOH)₂(OOC^sBu)₂ bestätigt, in dem zwei Zweikerneinheiten über Ru-O-Bindungen verbunden sind [3]. Die Depolymerisation dieser Ketten mit Phosphanen wurde von Piacenti et al. systematisch untersucht [4], anhand des Phosphan-Derivats $Ru_2(CO)_4(\eta^2-OOC^nPr)_2(P^tBu_3)_2$ wurde die Struktur der zweikernigen Einheit als "Sägebock"-Gerüst der Symmetrie C_{2n} röntgenographisch geklärt [5,6]. Chiral modifizierte Zweikerncluster des Typs Ru₂(CO)₄(η^2 -S-OOCHMeEt)₂(R, R-DIOP)₂ wurden 1985 von Piacenti et al. synthetisiert und als Katalysatoren für die asymmetrische Hydrierung von 2-Methyl-2butensäure eingesetzt [7]. Wir berichten hier über Synthese und Charakterisierung der Zweikerncluster Ru₂(CO)₄(η^2 -OOCR)₂(η^2 -DIOP) (R = Me, Et, CF₃; DIOP = R, R-DIOP und S, S-DIOP) sowie deren Anwendung als enantioselektive Katalysatoren bei der Hydrierung von Hydroxyaceton zu 1,2-Propandiol.

Ergebnisse und Diskussion

Die Diacetonitril-Komplex $\operatorname{Ru}_2(\operatorname{CO})_4(\eta^2-\operatorname{OOCR})_2(\operatorname{NCMe})_2$ (R = Me, Et) reagieren in Tetrahydrofuran mit der stöchiometrischen Menge an 4,5-Bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3-dioxolan (DIOP) in hohen Ausbeuten zu den Diphosphan-Komplexen $\operatorname{Ru}_2(\operatorname{CO})_4(\eta^2-\operatorname{OOCR})_2(\eta^2-\operatorname{DIOP})$ (1-2). Die verbrückenden Acetato- bzw. Propionatoliganden in 1 und 2 lassen sich leicht gegen Trifluoracetatobrücken austauschen: Mit CF₃COOH reagieren 1 und 2 zu $\operatorname{Ru}_2(\operatorname{CO})_4(\eta^2-$ OOCCF₃)₂(η^2 -DIOP) (3). Sämtliche Komplexe sind sowohl mit dem *S*, *S*-DIOP-(*a*) als auch mit dem *R*, *R*-DIOP-Liganden (*b*) isoliert und charakterisiert.

$$\operatorname{Ru}_{2}(\operatorname{CO})_{4}(\eta^{2}\operatorname{-OOCR})_{2}(\operatorname{NCMe})_{2} \xrightarrow{+\operatorname{DIOP}}_{-2\operatorname{MeCN}} \operatorname{Ru}_{2}(\operatorname{CO})_{4}(\eta^{2}\operatorname{-OOCR})_{2}(\eta^{2}\operatorname{-DIOP})$$

		1a	1b	2a	2b
(R = Me, Et)	R	Me	Me	Et	Et
	DIOP	S,S	R, R	S, S	R, R

$$\operatorname{Ru}_{2}(\operatorname{CO})_{4}(\eta^{2}\operatorname{-OOCR})_{2}(\eta^{2}\operatorname{-DIOP}) \xrightarrow{+2 \operatorname{CF}_{3}\operatorname{COOH}}{-\operatorname{RCOOH}}$$

(R = Me, Et)
$$Ru_{2}(CO)_{4}(\eta^{2}-OOCCF_{3})_{2}(\eta^{2}-DIOP)$$
$$\frac{|3a|3b}{DIOP||S,S|R,R}$$

Die Verbindungen 1-3 fallen nach der chromatographischen Reinigung als gelbe, luftstabile Kristalle an. Sie sind im Hochvakuum nicht unzersetzt flüchtig und zeigen im Massenspektrum als Basispeak das einkernige Fragmention [Ru(CO)-(OOCR)(DIOP)]⁺ (R = Me; 1, m/e 687; R = Et: 2, m/e 701; R = CF₃, m/e 740 bezogen auf ¹⁰¹Ru); nur 3a und 3b zeigen auch das Molekülion (m/e 1038) sowie ein zweikerniges Fragmention [Ru₂(CO)(OOCCF₃)₂(DIOP)]⁺ (m/e 954). Alle Signale zeigen die charakteristische Ru₁- bzw. Ru₂-Isotopenverteilung.

In den Infrarotspektren von 1-3 treten drei Banden im Streckschwingungsbereich terminaler Carbonylliganden auf (Tab. 1); das Intensitätsverhältnis entspricht dem typischen Absorptionsmuster einer $M_2(CO)_4$ -"Sägebockeinheit" mit C_{2n} -Symmetrie wie es auch bei $\operatorname{Ru}_2(\operatorname{CO})_4(\eta^2-\operatorname{OOCMe})_2(\operatorname{NCMe})_2$ [1], $Ru_{2}(CO)_{4}(\eta^{2}-OOCEt)_{2}(NCMe)_{2}$ [2] und $Ru_{2}(CO)_{4}(\eta^{2}-OOC^{n}Pr)_{2}(P^{t}Bu_{3})_{2}$ [5,6] beobachtet wurde. Die beiden Carboxylato-Brücken geben sich durch eine symmetrische und eine antisymmetrische ν (OCO)-Valenzschwingung zu erkennen. Im Feststoff-Spektrum finden sich darüber hinaus die ν (CF)-Valenzabsorptionen bei 1205 und 1154 cm⁻¹; die übrigen Banden sind auf Schwingungen des DIOP-Liganden zurückzuführen. Aufgrund der Übereinstimmung des ν (CO)-Absorptionsmusters von 1-3 mit dem des röntgenographisch gesicherten Komplexes $\operatorname{Ru}_{2}(\operatorname{CO})_{4}(\eta^{2}-\operatorname{OOC}^{n}\operatorname{Pr})_{2}(\operatorname{P}^{1}\operatorname{Bu}_{3})_{2}$ [6] kann angenommen werden, dass die beiden P-Atome des DIOP-Liganden fast axial gebunden sind. Für den kürzlich beschriebenen Diiodokomplex Ru₂(CO)₄(μ_2 -I)₂(η^2 -DPPM), bei dem die Ru-P-Bindungen fast senkrecht zur Ru-Ru-Bindung stehen, wird ein deutlich anderes ν (CO)-Absorptionsmuster beobachtet [8].

Die äquivalente Koordination der beiden Phosphoratome des DIOP-Liganden in 1-3 findet in den ³¹P-NMR-Spektren ihren Niederschlag, die jeweils nur eine einzige Resonanz zeigen (Tab. 1). Die ¹⁹F-NMR-Spektren beweisen bei 3 außerdem mit nur einer Resonanz die Äquivalenz der beiden Carboxylatobrücken; bei 1 und 2 kommt dies in jeweils nur einem einzigen Signal für die Methyl- bzw. Methylen-Protonen der Carboxylatobrücken zum Ausdruck. Die übrigen ¹H-NMR-Daten von 1-3 werden von dem DIOP-Liganden hervorgerufen. Besonders aussagekräftig sind die ¹³C-NMR-Daten von 1-3 (Tab. 2): Zwei unterschiedliche Signale für die vier Carbonylliganden beweisen die durch das chirale DIOP-System hervorgerufene paarweise Diastereotopie; dieser Effekt ist offenbar zu klein, um sich im Infrarotspektrum bemerkbar zu machen.

Die Komplexe 1-3 katalysieren die Hydrierung von Hydroxyaceton zu 1,2-Propandiol; der chirale Ligand in 1-3 führt dabei über eine optische Induktion zur Dominanz des jeweils einen Enantiomeren. Die höchsten katalytischen Umsätze

Komplex	la	1 b	2a	2P	3a	36	
IR a							L
r(CO)	2023vs,1978m	2023vs,1978m	2022vs,1976m	2022vs,1977m	2035vs,1991m	2035vs.1989m	
	1949vs	1949vs	1947vs	1947vs	1965vs	1963vs	
»(OCO)	1572s,1434s	1572s,1433s	1565s,1432m	1566s,1433m	1661m,1433w	1660m,1433w	
¹ H-NMR ^b							
8((CH ₃) ₂ C)	0.87(s,6H)	0.86(s,6H)	0.94(s,6H)	0.92(s,6H)	0.83(s,6H)	0.89(s,6H)	
\$(CH3COO)	1.64(s,6H)	1.63(s,6H)				~	
8(CH3CH2COO)			0.77(t,6H)	0.76(t,6H)			
8(CH3CH2COO)			1.91(q,4H)	1.94(q,4H)			
8(CH1)	2.61(m,4H)	2.56(m,4H)	2.59(m,4H)	2.57(m,4H)	2.52(m,4H)	2.54(m,4H)	
S (CH)	3.83(m,2H)	3.79m,2H)	3.77(m,2H)	3.73(m,2H)	3.61(m,2H)	3.63(m.2H)	
δ(C ₆ H ₅)	7.44(m,20H)	7.38(m,20H)	7.39(m,20Н)	7.39(m,20H)	7.20-7.70(m,20H)	7.20-7.40(m,20H)	
³¹ P{ ¹ H} - NMR ^{b,c} 8(P)	13.33	13.26	12.85	12.85	13.59	13.59	
19F-NMR b.d							
8(CF ₃)					0.40	0.39	

IR- und ¹H-, ³¹P- sowie ¹⁹F-NMR-Daten der Komplexe 1-3 Tabelle 1

182

Tabelle 2

4
<u> </u>
_
Komplexe
Ę
Daten
_
Ħ
ວັ
•

.

	1a	4	2	29	3a	3	
&(CH,COO)	23.8	23.8					
8(CH,CH,COO)			10.8	11.0			
8((CH ₃) ₂ C)	25.2	26.5	26.5	26.6	25.9	25.9	
8(CH ₂)	26.5	28.8	29.1	29.3	28.0 ^d 16.0 Hz	28.0 ^d 16.0 Hz	
8(CH,CH,COO)			30.8	30.8			
ð(CH)	78.4	78.5	78.5	78.6	6.17	9. 17	
\$(C)	108.7	108.8	109.0	109.0	108.8	108.8	
b (CF ₃ COO)					114.7(q) °287.0 Hz	114.7(q) ° 287.2 Hz	
ð(C,H,)	128.2;128.4(<i>m</i>)	128.2(m)	128.3(<i>m</i>)	128.5(<i>m</i>)	128.1(<i>m</i>)	128.1(m)	
ì	129.7;130.1(p)	129.1;129.5(<i>p</i>)	129.6;130.1(<i>p</i>)	129.3;130.1(<i>p</i>)	129.7;129.9(<i>p</i>)	129.7;129.9(<i>p</i>)	
	132.8;134.1(0)	133.5;134.4(0)	132.9;134.3(0)	132.5;134.2(0)	132.4;133.2(0)	132.4;132.9(0)	
	133.6;135.1(i)	133.7;135.1(i)	134.1;135.1(i)	133.4;135.2(i)	132.5;132.7(<i>i</i>)	132.5;132.7(<i>i</i>)	
\$(0C0)	186.3(1)(⁶ 8.1 Hz]	186.2(t)(^b 8.1 Hz]	189.5(t)[^b 8.1 Hz]	189.6(t)[⁶ 8.4 Hz]	171.1(qt)(¹ 39.3,	171.3(qt)J ¹ 39.7,	
					^b 6.4 Hz]	^b 6.4 Hz]	
\$(CO)	206.2[°7.7 Hz]	206.2[°8.5 Hz]	206.5[°8.0 Hz]	206.3[°8.0 Hz]	204.0[°8.5 Hz]	203.9 [°] 8.5 Hz]	
	206.6[°7.7 Hz]	206.7[°8.5 Hz]	206.7[°8.0 Hz]	206.6[°8.0 Hz]	204.3[°8.5 Hz]	204.3(°8.5 Hz]	
* 1a-2a in CD,C1,.	3a und 3b CDCl ₃ .	^{b 3} J(C,P). ^c Σ ² J(C,P)+ ³ .	J(C,P), virtuelles Triplett,	$d \Sigma^{1} J(C,P) + J(C,P)$), virtuelles Triplett.	• ¹ J(C.F). ¹² J(C.F).	

4 5 ĥ ۱.

Katalysator	Katalytischer Umsatz ^b	[<i>α</i>] ²² _D	ee (%) ^c	Überwiegendes Enantiomer
1a	699	+ 2.244	13.6	S-1,2-Propandiol
1b	671	- 2.310	14.0	R-1,2-Propandiol
2a	580	+1.023	6.2	S-1,2-Propandiol
2b	615	- 1.056	6.4	R-1,2-Propandiol
3a	954	+ 0.759	4.6	S-1,2-Propandiol
3b	992	-0.808	4.9	R-1,2-Propandiol

Hydrierung von Hydroxyaceton mit den chiralen Komplexen 1-3 als Katalysatoren^a

^a Reaktionsbedingungen: 15 ml THF, 0.05 mmol Katalysator, 3.42 ml (50 mmol) Hydroxyaceton, 40 bar H₂, 120 °C, 20 h. ^b mol Produkt/mol Katalysator. ^c mol Überschußenantiomer/mol Unterschußenantiomer.

werden mit 3, die höchsten Enantiomerenüberschüsse dagegen mit 1 als Katalysator erzielt (Tab. 3).

$CH_3COCH_2OH + H_2 \rightarrow CH_3^*CHOHCH_2OH$

Das gebildete 1,2-Propandiol wurde IR-, ¹H- und ¹³C-NMR-spektroskopisch sowie gaschromatographisch durch Vergleich mit einer authentischen Probe identifiziert; der Enantiomerenüberschuss wurde mit Hilfe des optischen Drehwinkels bestimmt. Die Genauigkeit dieser Methode wurde durch Überführung des Enantiomerengemisches in Diasteromere und GC- und NMR-Messungen unabhängig überprüft: Dazu wurde das S- und R-1,2-Propandiol-Gemisch mit HBr und n-Pentanol epoxydiert [9]; das Epoxid-Gemisch wurde mit n-Hexylmagnesiumbromid umgesetzt [10] und mit S- α -Methoxy- α -trifluormethylphenyl-essigsäurechlorid verestert [11]. Alle ee-Werte stimmen innerhalb von $\pm 0.4\%$ überein.

In allen Fällen läßt sich der eingesetzte Cluster nach Beendigung der Katalyse nicht mehr isolieren; der Katalysatorrückstand kann jedoch mit vergleichbaren katalytischem Umsatz und vergleichbarer Enantioselektivität für weitere Ansätze eingesetzt werden.

Experimentelles

Alle Arbeiten werden unter gereinigtem Stickstoff als Schutzgas durchgeführt; die verwendeten Lösungsmittel müssen absolut und N₂-gesättigt sein. IR-Spektren: Perkin-Elmer 983 G. NMR-Spektren: JEOL FX 90Q sowie Bruker AC 300. Massenspektren: Varian MAT 312. Rotationsdispersionsmessungen: Perkin-Elmer 241 Polarimeter.

Darstellung der Komplexe $Ru_2(CO)_4(\eta^2 - OOCR)_2(\eta^2 - DIOP)$ (1-2)

1.0 mmol des Komplexes $\operatorname{Ru}_2(\operatorname{CO})_4(\eta^2\operatorname{-OOCR})_2(\operatorname{NCCH}_3)_2(1: R = Me, 2: R = Et)$ und 1.0 mmol (498 mg) S, S-DIOP (a) bzw. R, R-DIOP (b) werden in jeweils 150 ml THF gelöst. Nach zweistündigem Erhitzen unter Rückfluss wird die orangegelbe Lösung bis zur Trockene eingeengt, der Rückstand wird in 10 ml CHCl₃ gelöst und dünnschichtchromatographisch gereinigt (Tab. 4). Das jeweilige Produkt wird mit Dichlormethan aus der gelben Zone extrahiert, aus Dichlormethan/n-Pentan (1/2) auskristallisiert und im Hochvakuum getrocknet.

Tabelle 3

Cluster Laufmittel	Laufmittel	R _f	M.p. (° C)	Ausbeu- ten (%)	Mikroanalyse (Gef. (ber.) (%))	
					c	Н
1a	Cyclohexan/Dichlormethan (2/8)	0.70	190–192	81	50.30 (50.32)	4.08 (4.12)
1b	Cyclohexan/Dichlormethan (2/8)	0.75	188–190	79	50.43 (50.32)	4.16 (4.12)
2a	Cyclohexan/Dichlormethan (3/7)	0.75	144-146	71	51.22 (51.36)	4.44 (4.42)
2Ь	Cyclohexan/Dichlormethan (3/7)	0.74	143–145	79	51.44 (51.36)	4.38 (4.42)
3a	Cyclohexan/Dichlormethan (1/1)	0.73	144146	78	45.16 (45.11)	3.22 (3.11)
3Ь	Cyclohexan/Dichlormethan (1/1)	0.76	148-150	75	47.03 (45.11)	3.38 (3.11)

Chromatographiebedingungen, $R_{\rm f}$, Schmelzpunkte, Ausbeuten und Mikroanalysen der Komplexe 1-3

Darstellung der Komplexe $Ru_2(CO)_4(\eta^2 - OOCCF_3)_2(\eta^2 - DIOP)$ (3)

300 mg (0.32 mmol) des Komplexes $\operatorname{Ru}_2(\operatorname{CO})_4(\eta^2\operatorname{-OOCCH}_3)_2(\eta^2\operatorname{-DIOP})$ (a: S, S-DIOP; b: R, R-DIOP) und 3.2 ml (42 mmol) Trifluoressigsäure werden in 50 ml THF gelöst. Nach dreistündigem Rühren bei Raumtemperatur wird die gelbe Lösung bis zur Trockene eingeengt, der Rückstand wird in 5 ml CH₂Cl₂ gelöst und dünnschichtchromatographisch gereinigt (Tab. 4). Das Produkt wird mit Dichlormethan aus der gelben Zone extrahiert und im Hochvakuum getrocknet.

Asymmetrische Hydrierung von Hydroxyaceton mit den Komplexen 1-3 als Katalysatoren

15 ml einer THF-Lösung von 0.05 mmol des jeweiligen Katalysators 1–3 und 50.0 mmol (3.42 ml) Hydroxyaceton werden in den Autoklaven eingefüllt. Anschließend wird der magnetisch rührbare Autoklav verschlossen, mit 40 bar Wasserstoff unter Druck gesetzt und 20 h bei 120°C (Manteltemperatur) erhitzt. Nach Abkühlen und Entspannen des Autoklaven wird die gelbbraune Reaktionslösung einer Wasserstrahlvakuum-Destillation unterworfen. Das Enantiomerengemisch von 1,2-Propandiol wird als zweite Fraktion (87–92°C, 11 mbar) als zähes, farbloses Öl erhalten.

Dank

Tabelle 4

Für finanzielle Unterstützung sind wir der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie, der Stiftung Volkswagenwerk, der Karl-Winnacker-Stiftung sowie dem Minister für Forschung und Wissenschaft des Landes Nordrhein-Westfalen zu Dank verpflichtet. Herrn Prof. Dr. Max Herberhold, Universität Bayreuth, danken wir für die Bereitstellung von Institutsmitteln, sowie Johnson Matthey Chemicals Limited für eine Spende von Ruthenium(III)-chloridhydrat.

Literatur

- 1 G.R. Crooks, B.F.G. Johnson, J. Lewis und I.G. Williams, J. Chem. Soc. (A), (1969) 2761.
- 2 G. Süss-Fink, G. Herrmann, P. Morys, J. Ellermann und A. Veit, J. Organomet. Chem., 284 (1985) 263.
- 3 M. Rotem, Y. Shvo, I. Goldberg und U. Shmueli, Organometallics, 3 (1984) 1758.
- 4 M. Bianchi, P. Frediani, U. Matteoli, G. Menchi, F. Piacenti und G. Petrucci, J. Organomet. Chem., 259 (1983) 207.
- 5 H. Schumann, J. Optiz und J. Pickardt, J. Organomet. Chem., 128 (1977) 253.
- 6 H. Schumann und J. Opitz, Chem. Ber., 113 (1980) 989.
- 7 U. Matteoli, G. Menchi, P. Frediani, M. Bianchi und F. Piacenti, J. Organomet. Chem., 285 (1985) 281.
- 8 A. Colombie, G. Lavigne und J.-J. Bonnet, J. Chem. Soc., Dalton Trans., (1986) 899.
- 9 B.T. Golding, D.R. Hall und S. Sakrikar, J. Chem. Soc., Perkin Trans. I, (1973) 1214.
- 10 G. Voss und H. Gerlach, Helv. Chim. Acta, 66 (1983) 2294.
- 11 J.A. Dale, D.L. Dull und H.S. Mosher, J. Org. Chem., 34 (1969) 2543.